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Today’s Topics

» Why do we care about shallow Cu?

» Parameterizations of shallow Cu in regional
scale models

» Sample results for the SGP
m Data sets and evaluation strategies

» Road map for future efforts
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l. Why Study Shallow Clouds?

m This role can be underappreciated

[> Play an important role in the Earth’s radiation budget J

» Transport between convective boundary layer and free
troposphere

m Linkages between surface and clouds (CLASIC)
m Aerosols can be lofted to higher altitudes
AGcUu m Cloud-aerosol interactions (CHAPS; Berg et al. 2009—BAMS)

» Likely to remain sub-grid scale in the future

m Cloud scale ~1 km
m “Cloud Resolving Model” ~4 km
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l. Why Shallow Clouds: Radiation

» Recent study (Berg et al. 2009) has looked at the
shortwave and longwave cloud forcing

m Makes use of Chuck Long’s VAPs that make estimates of clear-
sky shortwave and longwave fluxes

Longwave

Shortwave

Forcing (W m'z)
» Dong et al. (2006) found surface shortwave forcing was
-87 W m-2

m All low-level clouds . e
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Il. Parameterization of Shallow Cumuli

» Two parts to representing convective clouds
m Do they form (the trigger)?
o Kain Fritsch uses an ad-hoc temperature perturbation
= How many form (the closure)?
o Generally expressed as a mass flux

» Deep convection closure
m Based on conditional instability or moisture convergence

» Shallow convection

m Based on strength of capping inversion (which can be interpreted
different ways: CAPE, CIN)

m Shallow cumuli are linked to the boundary layer, requiring a
coupling between turbulence and convective parameterizations
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Il. Parameterizations

» A number of new parameterizations for shallow Cu have
been introduced and supported by ARM in the past:

m UW Scheme (Bretherton et. al 2004)

m ECMWEF Scheme (Neggers et al. 2009; ongoing work by M.
Ahlgrimm)

m PNNL (CuP) Scheme (Berg and Stull 2005)

» Each relates cloud properties to the boundary-layer
turbulence, but differences in trigger and closure
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Il. Parameterizations

| uw | ECMWF PNNL (CuP)

Trigger Critical w, defined Extreme test parcel Parcel 6,
from CIN (W)

TKE, convective time

period, cloud-base
height

_ Cloud Fraction
» All closures have some relation to w

m Parcel 6, and w are related (e.g. CAPE)

m While all three use the distribution of variables within the grid
box, only PNNL (CuP) scheme tracks the entire family of parcels

o
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Il. Parameterization of Cloud Fraction

» Historically, treatment of mass flux is treated independently
of the cloud fraction

m From the mesoscale forecast point of view the mass transport is
important

m Cloud fraction less important for short-term forecasts

» Are mass flux and cloud
fraction the the same thing?

Development of Hydrodynamic Models Suitable for Air
Pollution and Other Mesometeorological Studies

RicuARD A. ANTHES AND THOMAS T. WARNER

Dep of M "y, The Pennsylvania State University, University Park 16802
(Manuscript received 25 August 1977, in final form 21 March 1978)

ABSTRACT

‘We describe the of a general, predictive, hyd i logical model. The model is
three-dimensional and is suitable for a wide variety of problems, ranging from the synoptic scale to the
small end of the mesoscale. The model contains provisions for variable terrain, a moisture cycle, sensible
heat addition at the earth’s interface, and high- and low-resolution boundary layer physics.

This paper presents the mathematical and numerical formulation used in the various options of the model.
First we write the basic equations on a Lambert conformal projection. Then we describe the horizontal and
vertical grid structure, the finite-difference equations, and the energetics of the three-dimensional model and
its two-dimensional analog. We consider the role of the lateral boundary conditions for limited area forecasts,
with emphasis on their effect on the mean motion over the domain.

Two options for mcludmg the incuonal and diabatic effects at the earth’s surface are presented. These

include a bulk and a hig] lution model of the planetary boundary hyer Both models
use a predictive surface energy equauon ped by Blackadar to d the ti dent surface
heat flux.

The water vapor cycle and the parameterization of cumulus convection are summarized. Both stable non-
convective (grid-scale relative humidity equal to 100%) and unstable convective (grid-scale relative humid-
ity less than 100%) preclpxtanon are modeled

‘We present several preli ions with the two-dil ional analog, in order to investigate the
sensitivity of the model to the ﬁmte-dlﬂerencmg scheme, the treatment of the upper boundary condition,
and the effect of the honmnlal dlﬁusmn on the solutions forced by moderate flow over steep terrain. The

ARM’ model is shown to be toa good and capable of simulating hydro-

static in waves isti Th are in a separate paper by
Warner et al. (1978).
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Il. Cloud mass flux vs. cloud fraction

ARM Observations
» Cloud mass flux: Transport due ., """+
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Il. Param. of Cloud Fraction (in WRF)

» Parameterization of cloud fraction is done outside of the
cumulus parameterization
m Based on the radiation parameterization

o Cloud water, cloud ice... things predicted in microphysics
parameterization

o Shallow Cu cloud water tends to be very small, clouds are
mixed out in the microphysics parameterization

» Clouds predicted by cumulus scheme but
not seen by the radiation parameterization!

» Solution: use the maximum of the radiation
based cloud fraction or the cumulus
cloud fraction
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lll. Sample Results: CuP & ACRF SGP Site

» Focused on CuP scheme
m Scheme has been implemented in WRF
m A set of simulations have been completed for the summer of 2004.

» Control simulations use Kain Fritsch scheme (KF-Standard)

» Data
m ARSCL (Clothiaux et al. 2000) g Atmospheﬁ
Radiation

o Cloud boundaries Measurement @
m Surface Cloud Grid VAP~ Ao Researeh Facily \
(SfcCldGrid; Long and Ackerman 2000)
o Gridded (0.25° x 0.25°) surface flux over the site

o An attempt to move beyond the infamous soda straw
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lll. Case Study: Cloud Fraction

» Clouds predicted with KF-CuP, none with
standard scheme
m Cloud fraction is too small
m Number of different ways to measure CF
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lll. Seasonal Simulations: Summer 2004

» KF-CuP does a better job predicting cloud fraction
m Default predicts few clouds or nearly overcast
m Some artifacts of minimum cloud amount
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One way to move beyond the straw... time average \?é?/
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lll. Case Study: Downwelling Shortwave

» Standard scheme underpredicts change in downwelling SW

1400 F I ' I ' I ' I ' I ' I ' I ' -

N "% Obs. SW Irradiance

£ -0~ Obs. SW Irradiance, 1 Hr. ave

2 1200 —— Modeled Clear Sky SW Irradiance 7
o =@ WRK KF-CuP

(@)

S 1000} =—O— WRF KF-Standard —
S

o

= 800} .

>

=

pud 600 — -

(@)

<

w

2 4001 -
E

g 200 -

@]

a

0

12:00 14:00 16:00 18:00 20:00 22:00 00:00 02:00
7/2/04 7/3/04

Date and Time (UTC) %/

Pacific Northwest
14 ARM: ) NATIONAL LABORATORY



lll. Downwelling SW

» More reduction of downwelling SW
with KF-CuP
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lll. Seasonal Simulation: Summer 2004

» Distributions of SW Cloud Effect (radiation time step of 10 m.)
m KF has large peak at 0
m KF-CuP has peak near -100 Wm-

m Observations (15 minute average) peak near 0, and have cases with
positive forcing
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VI. Roadmap, Where Should We be Going?

» Improved representation of the transition from shallow to
deep convection

» Treatment of 3D radiative transfer
» Improved treatment of cloud-aerosol interactions

» Parameterization of shallow clouds in “cloud resolving”
simulations

» Unified parameterizations, linking the boundary layer,
shallow convection and deep convection

» Utilization of new data streams
All of ASR
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VI. Transition from Shallow to Deep Convection

» Better treatment of shallow clouds could improve
forecasts of deep convection

» June 27-28 case, scattered thunderstorms
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Latitude (°)

VI. Transition Cont:

» Larger amounts of precipitation and less ;_
homogeneous with KF-CuP
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VI. Treatment in Cloud Resolving Models

» Cloud scale resolving models use horizontal grid
resolutions of 4, 2, or 1 km

» Spatial scale of shallow clouds is on the order of 1 km
m Cloud chord length was found to be ~1 km

» 2Ax wave Is best case

m In practice WRF is close to 7Ax wave
(Skamarock 2004)

» Parameterizations of shallow cumuli
will be required for some time into the future

o
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VIi. Review: Downwelling Shortwave

» Many periods during which cloud effect is positive
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VI. 3-D Impacts

Total = Direct + Diffuse e
Unblocked Direct (cloudy sky) = Direct (clear sky)

. . Pacific Northwest
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VI. 3-D Impacts

» Fields of shallow clouds are not homogeneous
m Potential impact of 3-D cloud fields
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VI. 3-D Impacts

» Instances of positive forcing even for large averaging times
m At WRF time scales ~ 30 Wm?
m At CAM time scales ~ 15 Wm-2
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V. Conclusions

» Shallow Cu play an important role in climate and should
not be ignored

» Regional scale models should be evaluated over long
time periods

» New parameterizations have been developed that show
improved predictions of cloud fraction and downwelling
shortwave irradiance

» Where should we be going...
m Transition from shallow to deep convection
3D radiation
Parameterization of shallow clouds in high resolution models

r

Ll

m Cloud-aerosol interactions
m Unified parameterization

7
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Shallow Cu play an important role in climate and should
not be ignored

Regional scale models should be evaluated over long
time periods

New parameterizations have been developed that show
improved predictions of cloud fraction and downwelling

shortwave irradiance

Where should we be going...
Transition from shallow to deep convection
3D radiation
Cloud-aerosol interactions
Unified parameterization
Parameterization of shallow clouds in high resolution models

o
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Outline
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Latitude (°)

Case Study: May 18, 2004
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Latitude (°)

34

Case Study 17 July

» Results shown for 19 UTC, on
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lll. Case Study: July 2

Missouri
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» Large differences over lowa and
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l. Why Shallow Clouds: Radiation

» Recent study (Berg et al. 2009) has looked at the
shortwave and longwave cloud forcing

m Makes use of Chuck Long’s VAPs that make estimates of clear-
sky shortwave and longwave fluxes

m When all times (both clear and cloudy) are considered shortwave
and longwave forcing are small

Longwave

Shortwave
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Model setup

» Single domain
m 182x131x45

» Parameterizations
m WREF Single Moment (WSM) 6-class microphysics
m CAM shortwave and longwave
m Mellor-Yamada-Janjic (ETA) boundary layer
m NOAH surface layer

» Boundary conditions from North American Regional
Reanalysis (NARR)

o
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